BOUNDED DOMAINS OF THE FATOU SET OF AN ENTIRE FUNCTION

BY

YUEFEI WANG*

Institute of Mathematics, Chinese Academy of Sciences Beijing 100080, China e-mail: wangyf@math03.math.ac.cn

ABSTRACT

Let f be an entire function of positive lower order and order less than 1/2. It is shown that every component of its Fatou set is bounded.

1. Introduction

Let f be a nonlinear entire function of the complex variable z. Its natural iterates f^n are defined by $f^0(z) = z$, $f^1(z) = f(z)$, $f^{n+1} = f(f^n(z))$, n = 1, 2, ... The **Fatou set** $\mathcal{F}(f)$ of the function f is the largest open set of the complex plane where the family $\{f^n\}$ forms a normal family. The complement of $\mathcal{F}(f)$ is called the **Julia set** and denoted by $\mathcal{J}(f)$. Then $\mathcal{J}(f)$ is closed and completely invariant under f. For more details of the concepts and properties in the iteration theory, we refer to the books by Beardon [5], Carleson and Gamelin [7] and McMullen [10] as well as Milnor's [9] lecture notes for rational functions and the survey articles of Baker [4] and Eremenko and Lyubich [8] for rational and entire functions and Bergweiler [6] for transcendental meromorphic functions.

If f is a polynomial of degree at least two, then $\mathcal{F}(f)$ contains the component $D = \{z, f^n(z) \to \infty\}$, which is unbounded and completely invariant. If f is transcendental entire, then, from Picard's theorem and the invariance of $\mathcal{J}(f)$, it is clear that $\mathcal{J}(f)$ is unbounded, so that $\mathcal{F}(f)$ no longer contains a neighbourhood of ∞ .

^{*} The author is supported by NSFC. Received May 31, 1999

Y. WANG

Baker [3] raised the question of whether every component of $\mathcal{F}(f)$ must be bounded if f is of sufficiently small growth. The appropriate growth condition would be of order < 1/2, since Baker [3] showed that for any sufficiently large positive a, the function $f_0(z) = z^{-1/2} \sin z^{1/2} + z + a$ is of order $\rho = 1/2$ and has an unbounded component D of $\mathcal{F}(f)$ containing a segment $[x_0,\infty)$ of the positive real axis. Moreover, Baker proved that the growth of a transcendental entire function f must exceed order 1/2, minimal type, if $\mathcal{F}(f)$ has an unbounded invariant component. In the positive direction to this problem, a few results have been obtained. Baker [3] proved that if a function of order $\rho = 0$ with sufficiently small growth, then $\mathcal{F}(f)$ has no unbounded components.

THEOREM A: Let f be an entire function with

(1.1)
$$\log M(r, f) = O\{(\log r)^t\}$$

as $r \to \infty$, where 1 < t < 3. Then every component of $\mathcal{F}(f)$ is bounded.

Here and later, we use the standard notations for the maximum modulus M(r, f), minimum modulus L(r, f), order of growth ρ and lower order of growth μ of a function f, namely,

$$\begin{split} M(r,f) &= \max\{|f(z)|:|z|=r\},\\ L(r,f) &= \min\{|f(z)|:|z|=r\},\\ \rho &= \limsup_{r \to \infty} \frac{\log \log M(r,f)}{\log r}, \end{split}$$

and

$$\mu = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r}$$

Stallard [11] improved the sufficient condition (1.1) and obtained THEOREM B: Let f be an entire function with

(1.2)
$$\log \log M(r, f) = O\left(\frac{(\log r)^{1/2}}{(\log \log r)^{\epsilon}}\right)$$

as $r \to \infty$, where $\varepsilon \in (0, 1)$. Then every component of $\mathcal{F}(f)$ is bounded.

We note that the entire functions satisfying (1.2) are still of order $\rho = 0$ with rather small growth. By imposing a condition on the regularity of growth, Stallard also proved the following THEOREM C: Let f be an entire function of order $\rho < \frac{1}{2}$ such that

(1.3)
$$\frac{\log M(2r,f)}{\log M(r,f)} \to c, \quad \text{as } r \to \infty,$$

where c is a finite constant that depends only on f. Then every component of $\mathcal{F}(f)$ is bounded.

By a method which is somewhat different from those of Baker or Stallard, Anderson and Hinkkanen [1] obtained the following result under another regularity condition on the growth of f.

THEOREM D: Let f be an entire function of order $\rho < \frac{1}{2}$ such that, for some positive constant c,

(1.4)
$$\frac{\phi'(x)}{\phi(x)} \ge \frac{1+c}{x}$$

for all sufficiently large x, where $\phi(x) = \log M(e^x, f)$. Then every component of $\mathcal{F}(f)$ is bounded.

We note that $\phi(x)$ is an increasing convex function of x by the Hadamard three-circles theorem and the function $\phi'(x)$ may fail to exist at a countable set of points. At such points, $\phi'(x)$ is defined to be the right-hand derivative.

In this paper we give a positive answer to this problem for all functions of positive lower order.

THEOREM 1: Let f be an entire function of order less than 1/2. Then if its lower order $\mu > 0$, every component of $\mathcal{F}(f)$ is bounded.

Therefore only the case $\mu = 0$ remains open.

2. Lemmas and proof of the theorems

To prove our main theorem, we need the following results.

The $\cos \pi \rho$ -type theorem plays a fundamental role in our proof. The key point is that for an entire function f of order less than $\frac{1}{2}$, the $\cos \pi \rho$ -type theorem ensures that the iterates f^k have a certain property of self-sustaining spread on any compact subset of the components of the Fatou set of f. The most suitable form for us is the following lemma, due to Baker [2].

LEMMA 1: Let f be an entire function of order $\rho < \frac{1}{2}$. Then there exist m > 1, R > 0 such that, for all r > R, there exists r' satisfying

$$r \leq r' \leq r^m$$
 and $L(r', f) = M(r, f)$.

Y. WANG

The next result was also obtained by Baker [3], using Schottky's theorem.

LEMMA 2: If, in a domain D, the analytic functions g of the family G omit the values 0, 1, and if E is a compact subset of D on which the functions all satisfy $|g(z)| \ge 1$, then there exist constants B,C dependent only on E and D, such that for any z, z' in E and any g in G we have

$$|g(z')| < B|g(z)|^C.$$

We shall show the following result, which implies Theorem 1.

THEOREM 2: Let f be an entire function of order $< \frac{1}{2}$. If for some positive number R_1 , and $R_{n+1} = M(R_n, f)$ (n = 1, 2, ...), there exists a number T > 1 such that

(2.1)
$$M(R_n^T, f) > M(R_n, f)^{mT}$$

for all sufficiently large n, where m is the number in Lemma 1, then the Fatou set $\mathcal{F}(f)$ has no unbounded components.

Proof of Theorem 2: We suppose on the contrary that $\mathcal{F}(f)$ has an unbounded component D. Without loss of generality we may assume that 0, 1 belong to $\mathcal{J}(f)$. Hence each function f^k omits the value 0, 1 in D. It follows from (2.1) that there exists $N_0 \in \mathbb{N}$ such that

$$(2.2) M(R_n^T, f) > M(R_n, f)^{mT}$$

for all $n \ge N_0$. From Lemma 1, we can choose $N_1 (\ge N_0)$ such that for each $n \ge N_1$, there exists ρ_n satisfying

$$(2.3) (R_n)^T \le \rho_n \le (R_n)^{mT}$$

with

(2.4)
$$L(\rho_n, f) = M(R_n^T, f).$$

Hence (2.2) and (2.4) give

(2.5)
$$L(\rho_n, f) > (R_{n+1})^{mT}$$

On the other hand, since D is unbounded and connected, there must exist $N_2 \ge N_1$ such that D meets the circles $\gamma_n = \{z : |z| = R_n\}, \gamma'_n = \{z : |z| = (R_n)^{mT}\}$ and $\gamma''_n = \{z : |z| = \rho_n\}$ for all $n \ge N_2$.

Vol. 121, 2001

We choose a value $N \in \mathbb{N}$ such that $N \geq N_2$ and note that D must contain a path Γ joining a point $w_N \in \gamma_N$ to a point $w'_{N+1} \in \gamma'_{N+1}$. It is clear that Γ must contain a point $w''_{N+1} \in \gamma''_{N+1}$. Therefore f(D) is a component of $\mathcal{F}(f)$ containing the path $f(\Gamma)$. We know that $M(R_N, f) = R_{N+1}$ and so $|f(w_N)| \leq R_{N+1}$. Also, $L(\rho_{N+1}, f) > (R_{N+2})^{mT}$ and so $|f(w''_{N+1})| > (R_{N+2})^{mT}$. Hence $f(\Gamma)$ must contain an arc joining a point $w_{N+1} \in \gamma_{N+1}$ to a point $w'_{N+2} \in \gamma'_{N+2}$.

We repeat the process inductively to find that $f^k(D)$ is a component of $\mathcal{F}(f)$ containing an arc of $f^k(\Gamma)$ which joins a point $w_{N+k} \in \gamma_{N+k}$ to a point $w'_{N+k+1} \in \gamma'_{N+k+1}$.

Thus, on Γ , the function f^k takes a value of modulus at least R_{N+k} . Since $R_{N+k} \to \infty$ as $k \to \infty$ and D is a component of $\mathcal{F}(f)$, we conclude that $f^k \to \infty$ as $k \to \infty$, locally uniformly in D. It follows that there exists $K \in \mathbb{N}$ such that, for all k > K and all $z \in \Gamma$, we have $|f^k(z)| > 1$.

Thus the family $\{f^k\}_{k>K}$ satisfies the conditions of Lemma 2 on Γ and so there exist constants B and C such that

(2.6)
$$|f^{k}(z')| < B|f^{k}(z)|^{C}$$

for all z, z' in $\Gamma, k > K$.

We know that, for any k > K, we can choose $z_k, z'_k \in \Gamma$ such that $f^k(z_k) = w_{N+k} \in \gamma_{N+k}$ and $f^k(z'_k) = w'_{N+k+1} \in \gamma'_{N+k+1}$ and so it follows from (2.6) that

$$M(R_{N+k}, f) = R_{N+k+1} < (R_{N+k+1})^{mT} < B(R_{N+k})^C$$

for each k > K. This contradicts the fact that f is a transcendental function, since $R_{N+k} \to \infty$ as $k \to \infty$. This completes the proof of Theorem 2.

Proof of Theorem 1: We only need to show that f satisfies (2.1) when f has positive lower order. In fact for any given $R_1 > 1$, let $T > \rho/\mu$ and $R_{n+1} = M(R_n, f), n = 1, 2, \ldots$ Then (2.1) holds. Otherwise there exists a sub-sequence $\{R_{n_i}\}_{j>1}$ of $\{R_n\}, R_{n_i} \to \infty$, as $j \to \infty$, such that

$$M(R_{\boldsymbol{n}_j}^T,f) \leq M(R_{\boldsymbol{n}_j},f)^{\boldsymbol{m}T}$$

for $j \geq 1$. Therefore

$$\frac{\log \log M(R_{n_j}^T, f)}{\log R_{n_j}} \leq \frac{\log mT + \log \log M(R_{n_j}, f)}{\log R_{n_j}}$$

By letting $j \to \infty$, we have

$$T\mu \leq \rho$$
.

It contradicts the assumption and so Theorem 1 is proved.

ACKNOWLEDGEMENT: The author would like to thank the referee for helpful suggestions.

References

- [1] J. M. Anderson and A. Hinkkanen, Unbounded domains of normality, preprint.
- [2] I. N. Baker, Zusammensetzungen ganer Funktionen, Mathematische Zeitschrift 69 (1958), 121-163.
- [3] I. N. Baker, The iteration of polynomials and transcendental entire functions, Journal of the Australian Mathematical Society 30 (1981), 483-495.
- [4] I. N. Baker, Iteration of entire functions: an introductory survey, in Lectures on Complex Analysis, World Scientific, Singapore, London, 1987, pp. 1-17.
- [5] A. F. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, Berlin, 1991.
- [6] W. Bergweiler, Iteration of meromorphic functions, Bulletin of the American Mathematical Society 29 (1993), 151-188.
- [7] L. Carleson and T. Gamelin, Complex Dynamics, Springer-Verlag, New York, Berlin, 1993.
- [8] A. Eremenko and M. Lyubich, The dynamics of analytic transforms, Leningrad Mathematical Journal 36 (1990), 563-634.
- [9] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, IMS Stony Brook, Preprint, 1990.
- [10] C. McMullen, Complex Dynamics and Renormalization, Annals of Mathematics Studies Vol. 135, Princeton University Press, Princeton, NJ, 1994.
- [11] G. M. Stallard, The iteration of entire functions of small growth, Mathematical Proceedings of the Cambridge Philosophical Society 114 (1993), 43-55.