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ABSTRACT 

Let .f be an entire function of positive lower order and order less than 

1/2. It is shown that every component of its Fatou set is bounded. 

1. In troduct ion  

Let f be a nonlinear entire function of the complex variable z. Its natural iterates 

f "  are defined by f ~  = z, f l (z)  = f ( z ) ,  ] ,+ l  = f ( f n ( z ) )  ' n = 1, 2,. . . .  The 
Fatou set  Y=(f) of the function f is the largest open set of the complex plane 
where the family {fn} forms a normal family. The complement of Y=(f) is called 
the Ju l ia  set and denoted by J ( f ) .  Then J ( f )  is closed and completely invariant 

under f .  For more details of the concepts and properties in the iteration theory, 
we refer to the books by Beardon [5], Caxleson and Gamelin [7] and McMullen [10] 
as well as Milnor's [9] lecture notes for rational functions and the survey articles 

of Baker [4] and Eremenko and Lyubich [8] for rational and entire functions and 

Bergweiler [6] for transcendental meromorphic functions. 

If f is a polynomial of degree at least two, then ~'(f) contains the component 

D = {z, f n ( z )  --+ co}, which is unbounded and completely invariant. If f is 

transcendental entire, then, from Picard's theorem and the invariance of J ( f ) ,  it 

is clear that J ( f )  is unbounded, so that ~ ( f )  no longer contains a neighbourhood 

o f  OO. 
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Baker [3] raised the question of whether every component of ~ '(f)  must be 

bounded if f is of sufficiently small growth. The appropriate growth condition 

would be of order < 1/2, since Baker [3] showed that for any sufficiently large 

positive a, the function fo(z) = z -1 /2s inz l /2  + z + a is of order p = 1/2 and 

has an unbounded component D of j r ( f )  containing a segment [x0, oc) of the 

positive real axis. Moreover, Baker proved that the growth of a transcendental 

entire function f must exceed order 1/2, minimal type, if ~-(f) has an unbounded 

invariant component. In the positive direction to this problem, a few results have 

been obtained. Baker [3] proved that if a function of order p = 0 with sufficiently 

small growth, then Y ( f )  has no unbounded components. 

THEOREM A: Let f be an entire function with 

(1.1) log M(r,  f )  = O{ (log r) t } 

as r --r oo, where 1 < t < 3. Then every component o f F ( f )  is bounded. 

Here and later, we use the standard notations for the maximum modulus 

M(r,  f ) ,  minimum modulus L(r, f ) ,  order of growth p and lower order of growth 

# of a function f ,  namely, 

M ( r , f )  = max{If(z)l : Izl = r}, 

L(r, f )  = min{lf(z)[ : Izl = r}, 

log log M(r,  f )  
p = lim sup 

r-~oo log r 

and 
# = lim inf log log M(r, f )  

r-~oo log r 

Stallard [11] improved the sufficient condition (1.1) and obtained 

THEOREM B: Let f be an entire function with 

(1.2) ((logr) 1/2 
l og logM(r , f )  = O (loglogr)e]  

as r -~ oo, where e E (0, 1). Then every component of Y ( f )  is bounded. 

We note that  the entire functions satisfying (1.2) are still of order p = 0 

with rather small growth. By imposing a condition on the regularity of growth, 

Stallard also proved the following 



Vol. 121, 2001 BOUNDED DOMAINS OF THE FATOU SET 57 

1 such that THEOREM C: Let f be an entire function of order p < 

log M(2r, f )  
(1.3) l o g M ( r , f )  +c, a s r -+oo ,  

where c is a finite constant that depends only on f .  Then every component of 

J=(f) is bounded. 

By a method which is somewhat different from those of Baker or Stallard, 

Anderson and Hinkkanen [1] obtained the following result under another 

regularity condition on the growth of f .  

1 such that, for some THEOREM D: Let f be an entire function of order p < -~ 

positive constant c, 

(1.4) r  > 1 +___s 
r  x 

for ali sufficiently large x, where r = log M(e x, f ) .  Then every component of 

~r(f) is bounded. 

We note that r is an increasing convex function of x by the Hadamard 

three-circles theorem and the function r may fail to exist at a countable set 

of points. At such points, r is defined to be the right-hand derivative. 

In this paper we give a positive answer to this problem for all functions of 

positive lower order. 

THEOREM 1: Let f be an entire function of order less than 1/2. Then if its lower 

order # > 0, every component of Jr(f) is bounded. 

Therefore only the case # -- 0 remains open. 

2. L e m m a s  a n d  p r o o f  o f  t h e  t h e o r e m s  

To prove our main theorem, we need the following results. 

The cos ~rp-type theorem plays a fundamental role in our proof. The key point 

is that  for an entire function f of order less than �89 the cos 7rp-type theorem 

ensures that  the iterates fk have a certain property of self-sustaining spread on 

any compact subset of the components of the Fatou set of f .  The most suitable 

form for us is the following lemma, due to Baker [2]. 

LEMMA 1: Let f be an entire function of order p < �89 Then there exist m > 1, 

R > 0 such that, for all r > R, there exists r' satisfying 

r < _ r ' < r  'n and L(r ' , f )  -- M(r,  f ) .  
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The next result was also obtained by Baker [3], using Schottky's theorem. 

LEMMA 2: I~ in a domain D, the analytic functions g of the family G omit the 

values 0, 1, and i r E  is a compact subset of D on which the functions all satisfy 

Ig(z)l >_ 1, then there exist constants B , C  dependent only on E and D, such 

that for any z, z ~ in E and any g in G we have 

Ig(z')[ < Blg(z)l C. 

We shall show the following result, which implies Theorem 1. 

1 If for some positive THEOREM 2: Let f be an entire function of order < ~. 

number Rt ,  and Rn+l = M(Rn,  f )  (n = 1 ,2 , . . . ) ,  there exists a number T > 1 

such that 

(2.1) M ( R  T, f )  > M(Rn,  f)mT, 

for all sut~ciently large n, where m is the number in Lemma i, then the Fatou 

set 3c(f) has no unbounded components. 

Proof of Theorem 2: We suppose on the contrary that .T(f) has an unbounded 

component D. Without loss of generality we may assume that 0, 1 belong to 

i f ( f ) .  Hence each function fk  omits the value 0, 1 in D. It follows from (2.1) 

that there exists No C N such that 

(2.2) M(Rn T, f )  > M(Rn,  f)mT 

for all n _> No. From Lemma 1, we can choose N1 (>_ No) such that for each 

n > N1, there exists Pn satisfying 

(2.3) (Rn) T <_ Pn <-- (Rn) mT 

with 

(2.4) L(pn, f )  = M(Rn T, f ) .  

Hence (2.2) and (2.4) give 

(2.5) L(p,,, f )  > (Rn+l) "~T. 

On the other hand, since D is unbounded and connected, there must 

exist N2 >__ N1 such that D meets the circles 3'n = {z : Izl = Rn}, 3'~ = 

{z:  Izl = (Rn) roT} and 7~ = {z: Izl = pn} for all n _> N2. 
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We choose a value N E N such that N _> N2 and note that D must contain a 

path F joining a point wg E 7N to a point w~v+l C ")'~v+l. It is clear that P must 

contain a point w~r E 7~+1. Therefore f (D) is a component of Jeff)  containing 

the path f ( r ) .  We know that M(RN, f)  = RN+I and so [f(wN)] < RN+I. Also, 

L(pn+l, f )  > (RN+2) mT and so [f(w~+l)  [ > (RN+2) rnT. Hence f (F )  must 

contain an arc joining a point WN+l E 7N+1 to a point w~v+2 E 7~v+2' 

We repeat the process inductively to find that fk(D) is a component of ~-(f) 

containing an arc of fk(P) which joins a point wN+k E 7g+k to a point ' WN+k+ 1 ~- 

7' N+k+l" 
Thus, on F, the function fk takes a value of modulus at least RN+k. Since 

Ru+k --~ c~ as k -+ oo and D is a component of $-(f),  we conclude that fk __~ cc 

as k -~ ~ ,  locally uniformly in D. It follows that there exists K E ~ such that, 

for all k > K and all z E F, we have Ifk(z)[ > 1. 
Thus the family {fk}k>a- satisfies the conditions of Lemma 2 on F and so there 

exist constants B and C such that 

(2.6) Ifk(z')[ < Blff(z)[ C 

for all z, z' in F, k > K. 

We know that, for any k > K, we can choose zk, z~ e F such that fk(zk) = 
! WU+k E "YN+k and fk(z~) = WN+k+ 1 '  E "Yg+k+l and so it follows from (2.6) that  

M(RN+k, f )  = RN+k+I < (Rg+k+l) mT < B(RN+k) C 

for each k > K. This contradicts the fact that f is a transcendental function, 

since RN+k ~ oo as k ~ oo. This completes the proof of Theorem 2. | 

Proof of Theorem 1: We only need to show that f satisfies (2.1) when f has 

positive lower order. In fact for any given R1 > 1, let T > p/p. and R,~+I = 

M(Rn, f ) ,  n = 1, 2 , . . . .  Then (2.1) holds. Otherwise there exists a sub-sequence 

{R~ }j>_l of {R.},  R.~ -+ co, as j -+ co, such that 

M ( R T ,  f) < M(R,~,, f)mT 

for j _> 1. Therefore 

log log M(RTj, f)  

log R~j 

By letting j --+ oo, we have 

log mT + log log M ( R, b , f )  < 
- log Rn~ 

T p < p .  

It contradicts the assumption and so Theorem 1 is proved. | 
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